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2. OBJECTIVES 

(unchanged) 

3. STATUS OF EFFORT 

Our research effort over the last three years has focused on three areas. First, we significantly 

improved our SEVI instrument and can now routinely obtain high resolution (0.1 - 1 meV) 

photoelectron spectra of negative ions, thereby obtaining new insights into vibronic coupling and 

other non-adiabatic effects in the open-shell neutral species generated by photodetachment. We 

have applied SEVI to the study of several radicals (CH30, propynyl, C2H) and the pre-reactive 

CIH2 complex. The latter study was particularly notable as it went a long toward settling some 

of the outstanding issues regarding the benchmark Cl + H2 reaction. Secondly, using the widely 

tunable Free Electron Laser for Infrared experiments, FELIX, we measured the infrared spectra 

of hydrated sulfate dianions, S042"(H20)„, with as many as 24 water molecules, as well as the IR 

spectra of water cluster anions (H2O),,", for clusters comprising as large as «=50. The sulfate 

work represented the first gas phase IR spectra of any multiply charged anion, and the (H2O),," 

spectra provided new insights into how excess electrons bind to large water clusters. Finally, we 

investigated the ultraviolet photodissociation dynamics of CIN3 at 248 and 193 nm in order to 

test the effect of excitation wavelength on the product branching ratio and the possible 

production of cyclic N3. 

4. ACCOMPLISHMENTS/NEW FINDINGS 

A.        Slow electron velocity-map imaging (SEVI) of negative ions 

SEVI is a photodetachment technique based on photoelectron imaging aimed at detecting 

slow electrons at high resolution.' Fig. 1 illustrates the principle of the method and a comparison 

with two other photodetachment techniques, time-of-flight photoelectron (TOF-PE) spectroscopy 

and anion zero electron kinetic energy (ZEKE) spectroscopy. In anion TOF-PE spectroscopy,2 

mass-selected anions are photodetached with a pulsed, fixed-frequency laser, and the resulting 

electron kinetic energy distribution is analyzed via TOF. The energy resolution of 8-10 meV is 

sufficient to resolve vibrational structure for molecules and clusters that do not exhibit 

vibrational activity in multiple low-frequency modes upon photodetachment.   Anion ZEKE 

spectroscopy3 yields considerably higher resolution, 1-3 cm"1 (0.1-0.3 meV). In this experiment, 



one photodetaches with a tunable laser and collects near zero-energy electrons as a function of 

laser frequency. Anion ZEKE spectroscopy has produced well-resolved spectra for radicals,4 

clusters,5 and transition state species,6 but the method is experimentally challenging and can only 

be applied to clusters that detach via an s-wave (photoelectron angular momentum /=0) near 

threshold. 

In SEVI spectroscopy, one uses velocity-map 

imaging (VMI)7 to obtain photoelectron spectra at a 

resolution as high as 2-3 cm"' over a relatively narrow 

eKE window, typically 10-100 meV. By tuning the 

photodetachment laser over a set of discrete 

frequencies, one obtains a complete, high resolution PE 

spectrum. SEVI offers resolution comparable to that of 

anion ZEKE spectroscopy, but data collection is faster 

by about two orders of magnitude. Moreover, SEVI is 

not restricted to s-wave detachment. 

A schematic of the instrument in shown in Fig. 

2. Ions are generated in a pulsed molecular beam 

coupled to a pulsed ionizer, mass selected by time-of- 

flight, and photodetached with a tunable dye laser. The 

resulting 

photoelectron 

s a collected 

and imaged 

onto a 

microchannel 

plate detector 

coupled to a 

phosphor 

screen. VMI 

is done using 
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Fig. 1. Comparison of SEVI (c) with 

photoelectron spectroscopy (a) and 

anion ZEKE spectroscopy (b) 
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Fig. 2. Schematic of anion SEVI spectrometer. 



relatively low extraction voltages (150-250 V) in order to magnify the image of low energy 

electrons at the detector. Over the last three years, we have optimized the performance of the 

spectrometer and have applied SEVI to several radicals and pre-reactive complexes, in each case 

resolving many new features that were not seen previously in anion PE spectroscopy. 

For example, the SEVI spectrum of the methoxide anion, CH3O", probed Jahn-Teller and 

spin-orbit coupling in the X 2E state of the methoxy radical, CH3O.8 Previous studies of CH3O" 

by anion PE spectroscopy9 yielded progressions assigned to the v5 and v6 degenerate vibrational 

modes of the radical that were allowed only because of Jahn-Teller coupling, with no discernible 

contributions from the totally symmetric modes that typically dominate PE spectra. The SEVI 

spectrum resolved several of the peaks in the PE spectrum as doublets split by spin-orbit 

coupling, and revealed previously unseen, weak transitions in the totally symmetric v2 and V3 

modes that lay between stronger transitions in the dominant modes. In addition, several hot and 

sequence bands were observed for the first time, yield new vibrational frequencies for the anion. 

We also measured the SEVI spectrum of the propynyl anion as a means of characterizing 

the 1-propynyl radical, OC-CH3.10 This study represents an example of using negative ion 

photodetachment to investigate a high-energy neutral species; the propynyl radical lies 42 

kcal/mole above the propargyl radical, H-C=C=CH2, which is the lowest-energy C3H3 isomer." 

As a result, the propynyl radical has been difficult to characterize spectroscopically. However, 

Lineberger and co-workers12 showed that this species could be generated by photodetachment of 

the propynyl anion, which is approximately isoenergetic with the propargyl anion. While 

Lineberger was able to measure a vibrationally resolved PE spectrum of the anion, the features 

were not assigned and there was some uncertainty as to whether the radical had a 2E or 2A\ 

ground state.'3 Our SEVI spectrum revealed considerably more vibrational structure and even 

some rotational structure. Comparison with electronic structure calculations showed that 

propynyl has a 2A\ ground state, and that pseudo-Jahn-Teller coupling with the low-lying 2E 

excited state is weak or non-existent. 

In contrast, the C2H radical exhibits strong vibronic coupling between its X 2£+ and 

A 2n states. These states are separated by about 3700 cm'1 and coupled through the bend 

vibration (n symmetry).1415 In the anion PE spectrum, this coupling appears as nominally 



forbidden transitions to bend-excited levels of the neutral X 2£ + state,16 and an extremely 

complex spectrum for the A2U state that was challenging to assign because so many of the 

peaks were suspected to comprise overlapping transitions.17 However, in the SEVI spectrum of 

C2H\ many of these peaks were easily resolved into multiple transitions.18 Nearly all of this 

newly observed structure could be assigned based on comparison with high level calculations1? 

in which vibronic coupling between the two states was accounted for. Moreover, this was the 

first system for which we definitively observed p-wave photodetachment in the SEVI spectrum, 

a testament to the sensitivity of the experiment since the cross section for p-wave detachment is 

considerably less than that for s-wave detachment near threshold. 

Finally, we measured SEVI spectra of 

C1H2 and C1D2" in order to probe the pre- 

reactive C1H2 van der Waals (vdW) region on 

the potential energy surface of the Cl + H2 

reaction.     The purpose of this experiment was 

twofold. First, a study of the Cl + HD reaction 

by Skouteris et allx provided experimental 

evidence that vdW forces in the reactant valley 

have a significant effect on the branching ratio 

of the HC1:DC1 product as a function of 

collision energy.   Secondly, experiments by Liu 

and co-workers22 on the Cl + H2 reaction 

suggested that the Cl*(2Pi/2) excited state was 

more reactive than the Cl(2P3/2) ground state. 

This result is at odds with expectations based on 

the Born-Oppenheimer approximation, since the 

Cl* + H2 reactants do not correlate with ground 

state H + HC1 products, and also with state-of- 

the-art scattering calculations.23 It could only be 

correct in the presence of strong non-adiabatic 
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coupling between the ground and excited spin-orbit surfaces in the vicinity of the pre-reactive 

vdW well, and such coupling would be probed by the anion SEVI spectrum. 

The SEVI spectra, shown in Fig. 3, revealed progressions in low-frequency CIH2 and 

C1D2 bending and stretching modes, in contrast to the PE spectrum,24 which showed no 

vibrational structure, and an earlier SEVI spectrum' that showed only partial resolution of the 

relatively high frequency bend modes. Fig. 3 compares the experiment to simulations with and 

without non-adiabatic couplings between the Cl spin-orbit states.   Though non-adiabatic effects 

are small, their inclusion improves agreement with experiment. This comparison validates the 

theoretical treatment, especially of the non-adiabatic effects, in this critical region of the Cl + Hi 

reaction, and shows that these effects are minor. 

B.        Infrared spectroscopy ofhydrated sulfate dianions and water cluster onions 

We have measured the infrared spectra, shown in Fig. 4, of gas phase, hydrated sulfate 

dianions, S042"(H20)„, with «=3-24, in order to understand the evolution of hydrogen-bonding 

motifs in the stepwise hydration of a dianion and to see how these motifs differ from those in the 

hydration of singly-charged anions."5 This study was motivated by previously reported 

photoelectron spectra26 of S04
2"(H20)„ clusters that suggested novel water binding arrangements 

not present in the hydration of singly- 

charged anions. The experiments were 

performed in collaboration with Dr. 

Knut Asmis using the broadly tunable 

infrared free electron laser FELIX. A 

novel feature in these experiments is 

that mass-selected anions were trapped 

and cooled by collisions with He buffer 

gas at 18 K prior to spectroscopic 

investigation, thereby mitigating the 

uncertainty in temperature that often 

arises in cluster spectroscopy. Our 
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Fig. 4. Infrared spectra of S04
2"(H20)n anions. 

experiments represent the first IR spectra of multiply-charged anions in the gas phase. 



The spectra showed four main bands assigned to two vibrations of the dianionic core, the 

water bending mode, and solvent libration. The triply degenerate SO42" antisymmetric stretch 

vibration around 1100 cm"' probed the local solvent symmetry; this band appeared as a singlet, 

doublet, or triplet, depending on the number of water molecules and the symmetry of the solvent 

network with respect to the sulfate chromophore. The solvent librational band, around 700 cm"1, 

was also sensitive to the solvent hydrogen bonding network, particularly to whether hydrogen- 

bonding occurs solely between water molecules and the sulfate, as appears to be the case for «<6, 

or if instead some hydrogen-bonding occurs between water molecules, which we believe is the 

case for larger clusters. The spectra and accompanying electronic structure calculations 

indicated a highly symmetric structure for the n=6 cluster, in which each water bridges two O 

atoms on the sulfate core, and closure of the first solvation shell at n=\2. Our results have 

stimulated further experimental27 and theoretical28 work aimed at gaining a deeper understanding 

of these hydrated dianions. 

Similar studies were carried out for water cluster anions (H20)„\ w=15-50,29 with the goal 

of (a) determining the electron binding motif over a larger size than had been previously 

investigated30 and (b) testing the effect of cooling on the IR spectra of these clusters. Signal was 

seen in two frequency regions centered around 700 and 1500-1650 cm'1, corresponding to water 

librational and bending motions, respectively. The bending feature associated with a double- 

acceptor water molecule31 binding to the excess electron was clearly seen up to «=35. However, 

starting around «=25, this feature began to blue-shift and broaden, suggesting more delocalized 

electron binding for the larger clusters in which the excess electron interacts with multiple water 

molecules. 

C.        Photodissociation ofClNj 

The photodissociation dynamics of C1N3 at 248 and 193 nm were investigated by 

molecular beam photofragment translational spectroscopy.32 This research was motivated by 

experiments by Wodtke and co-workers33 in which ultraviolet photolysis of C1N3 yielded a 

bimodal Cl atom translational energy (ET) distribution. The energetics of the faster peak were 

consistent with production of Cl + linear N3, while those for the slower peak appeared consistent 

with a high energy, cyclic isomer of N3 predicted by Morokuma and co-workers.34 In our 

experiments,35 both the Cl and N3 photofragments could be observed, allowing one to determine 
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if, indeed, each of the two component of the Cl ET distribution could be momentum-matched to 

corresponding N3 products. 

The results at 248 nm are 

shown in Fig. 5, where we show the 

center-of-mass ET distributions for Cl 

and N3 products. Each distribution is 

bimodal. The fast peaks for both 

masses match very well, indicating 

production of Cl and stable N3 

products. However, the slower N3 

peak is truncated at ET<25 kcal/mol, 

while the Cl peak extends to 

considerably lower Ej. These results 

show that the slower product channel 

is Cl and a high energy form of N3 that 

dissociates en route to the detector. 

The energetics of this dissociation are again consistent with the those of cyclic N3. Interestingly, 

at 193 nm, we again find a bimodal distribution for the Cl product, but the ET distribution of the 

Cl atoms is nearly the same as at 248 nm, indicating that the additional photon energy is 

channeled entirely into internal energy of the N3 fragments. As a consequence, the N3 Ey 

distribution truncates at considerably higher ET than at 248 nm. Overall, our results show that 

the bimodal Cl distribution is robust and that both components correlate to N3 fragments. We 

cannot say from our work whether the high energy form of N3 is in fact cyclic, but more recent 

experiments by Wodtke36 support this assignment. 
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Fig. 5. Transiational energy (ET) distributions 

of Cl and N3 fragments from photodissociation 

ofCIN3at248nm. 
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